Distributed motor pattern underlying whole-body shortening in the medicinal leech.
نویسندگان
چکیده
Whole-body shortening was studied in the leech, Hirudo medicinalis, by a combination of videomicroscopy and multielectrode recordings. Video microscopy was used to monitor the animal behavior and muscle contraction. Eight suction pipettes were used to obtain simultaneous electrical recordings from fine roots emerging from ganglia. This vital escape reaction was rather reproducible. The coefficient of variation of the animal contraction during whole-body shortening was between 0.2 and 0.3. The great majority of all leech longitudinal motoneurons were activated during this escape reaction, in particular motoneurons 3, 4, 5, 8, 107, 108, and L. The firing pattern of all these motoneurons was poorly reproducible from trial to trial, and the coefficient of variation of their firing varied between 0.3 and 1.5 for different motoneurons. The electrical activity of pairs of coactivated motoneurons did not show any sign of correlation over a time window of 100 ms. Only the left and right motoneurons L in the same ganglion had a correlated firing pattern, resulting from their strong electrical coupling. As a consequence of the low correlation between coactivated motoneurons, the global electrical activity during whole-body shortening became reproducible with a coefficient of variation below 0.3 during maximal contraction. These results indicate that whole-body shortening is mediated by the coactivation of a large fraction of all leech motoneurons, i.e., it is a distributed process, and that coactivated motoneurons exhibit a significant statistical independence. Probably due to this statistical independence this vital escape reaction is smooth and reproducible.
منابع مشابه
Relative roles of the S cell network and parallel interneuronal pathways in the whole-body shortening reflex of the medicinal leech.
The whole-body shortening reflex of the medicinal leech Hirudo medicinalis is a withdrawal response produced by anterior mechanical stimuli. The interneuronal pathways underlying this reflex consist of the S cell network (a chain of electrically coupled interneurons) and a set of other, parallel pathways. We used a variety of techniques to characterize these interneuronal pathways further, incl...
متن کاملThe neuronal basis of the behavioral choice between swimming and shortening in the leech: control is not selectively exercised at higher circuit levels.
Swimming and the whole-body shortening reflex are two incompatible behaviors performed by the medicinal leech Hirudo medicinalis. We set out to examine the neuronal basis of the choice between these behaviors, taking advantage of the fact that the neuronal circuit underlying swimming is relatively well understood. The leech swim circuit is organized hierarchically and contains three interneuron...
متن کاملDifferential effects of serotonin enhance activity of an electrically coupled neural network.
Networks of electrically coupled neurons play an important role in coordinating activity among widely distributed neurons in the CNS. Such networks are sensitive to neuromodulation; but how modulation of individual cells affects activity of the entire network is not well understood. In the CNS of the medicinal leech, the S interneuron (S-cell) forms a network of electrically coupled neurons whe...
متن کاملInterneuronal and motor patterns during crawling behavior of semi-intact leeches.
Semi-intact tethered preparations were used to characterize neuronal activity patterns in midbody ganglia of the medicinal leech during crawling. Extra- and intracellular recordings were obtained from identified interneurons and from motor neurons of the longitudinal and circular muscles during crawling episodes. Coordinated activities of nine excitatory and inhibitory motor neurons of the long...
متن کاملNeuronal control of leech behavior.
The medicinal leech has served as an important experimental preparation for neuroscience research since the late 19th century. Initial anatomical and developmental studies dating back more than 100 years ago were followed by behavioral and electrophysiological investigations in the first half of the 20th century. More recently, intense studies of the neuronal mechanisms underlying leech movemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 86 5 شماره
صفحات -
تاریخ انتشار 2001